

GenomeTrakr database and network: WGS network for real-time characterization and source tracking of foodborne pathogens

Marc Allard, Ph.D.

Center for Food Safety and Applied Nutrition, US Food and Drug Administration

Almond Board Food Quality and Safety Symposium: June 2019

(NSF.)

NGS Costs

Cost per Raw Megabase of DNA Sequence

genome.gov/sequencingcosts

Illumina Suite

- > Massively parallel, short read, Sequencing-by-Synthesis
- > Cluster generation, reversible dye-terminator dNTPs
- Instruments range from low to high throughput:
 iSeq, MiniSeq, MiSeq, NextSeq, HiSeq, NovaSeq
- Read Length:
 Paired end reads (forward and reverse)
 150-300 bp long (300-600 total)
- > Max Output: 4M to 20B Reads

From 1.2 GB to 6 TB

Burnet

Ion Torrent by ThermoFisher Scientific

- > Ion Torrent semiconductor sequencing
- > Measures hydrogen ions (pH) during sequencing-by-synthesis reactions
- > No modified bases required

NSF

- > Instruments: Ion S5, S5 Plus, S5 Prime
 - 200-600 bp read length
 - Up to 130M Reads
 - Scalable output from 15 to 25 GB

https://www.thermofisher.com/us/en/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-run-sequence/ion-s5-ngs-targeted-sequencing.html

SMRT Sequencing by PacBio

- Single Molecular, Real-Time (SMRT)
 Sequencing
- > Zero-mode waveguides and phospholinked nucleotides (dyes)
- > PacBio RS II Original Long Read Sequencer
 - 60,000 bp max read length
 - 0.5-1 Gb per cell
 - Up to 16 cells per run
- > PacBio Sequel High throughput WGS
 - Targeting *de novo* assemblies
 - ~365,000 reads per cell
 - 5-8 Gb per cell

http://www.pacb.com/products-and-services/pacbio-systems/

Oxford Nanopore Technologies

- > Single molecule, real-time, nanopore sequencing
- > MinION Portable Sequencer
 - 5-10 Gb per flow cell
 - Extreme read lengths (record is > 2 MB)
 - Real-time data analysis
 - Compact size.
 Weighs <100g and plugs into PC via USB
- > PromethION High-throughput Sequencer
 - Up to 48 flowcells
 - Simultaneous sample processing
 - Increases data yield to TB
- > SmidgION smartphone device in development

Why Develop a WGS based Network?

- Tracking and Tracing of food pathogens
 - Insufficient resolution of current tools

 matching clinical to environmental
 improve the environmental database
 - Faster identification of the food involved in the outbreak
 - Limited number of investigators vs. facilities and import lines
 - Global travel
 - Global food supply

Benefits of a WGS Approach

- More discriminatory and informative than PFGE
- Clues to geographic origin of pathogen

This means:

- Greater certainty when matching clinical, environmental, and product sample isolates
- Links between illnesses and the potential source of contamination can be made with fewer isolates
- Investigators can be deployed in a more targeted manner, saving resources

End Result:

- Faster identification of the food involved in the outbreak
- Potential to help reduce the number of foodborne illnesses and deaths over the long term both in the U.S. and abroad.

Current Scope of GenomeTrakr Network

- Network includes labs at FDA, CDC, FSIS, 17 state health and university labs, 1 U.S. hospital lab, and 11 labs located outside the U.S.
 - Contributing labs are on 4 continents and in 10 countries
- The network provides high resolution genomic sequences of food pathogens, ex. *Salmonella, Listeria*, STEC's, others. Greater than 250,000 sequences in the database
- New GenomeTrakr labs are coming on-line
- Partnered with CDC in 2013 to study all clinical and environmental isolates of Listeria monocytogenes, now E. coli, (Salmonella coming)

FDA GenomeTrakr website http://www.fda.gov/Food/FoodScienceResearch/WholeGenomeSequencingProgramWGS/ucm363134.htm

U.S. GenomeTrakr Labs

Labs Outside the U.S. Contributing to GenomeTrakr

Basic Data Flow for Global WGS Public Access Databases

DATA ACOUISITION

Sequence and upload genomic and geographic data

State, Local, Federal, and Foreign Public Health Agencies

Academia/Industry

Total Number of Sequences in the GenomeTrakr Database

Number of Sequences (as of the last day of the quarter)

May 09, 2019 GenomeTrakr Numbers

Species	Total Isolates
Salmonella enterica	196 325
Sumonena enteriea	190,923
E.coli and Shigella	71,760
Campylobacter jejuni	29,770
Listeria monocytogenes	26,923
Vibrio parahaemolyticus	1,859
Cronobacter	605
Total	327,242

How do we use the GenomeTrakr information? Example of Listeria in sprouts using a phylogenetic perspective.

Further perspectives on the food supply

CENTER FOR FOOD SAFETY & APPLIED NUTRITION

Once tomatoes reach the supply chain, things really "simplify".

The Fresh-cut Tomato Supply Chain

Scenario 2 and statistics: Resident Contamination

Field 1

Post inspection determines root cause of contamination event.

Whole Genome Tree

Key Conclusions from VA surveys Identify Water, Water, and Water

- Sampled Areas:
 - Virginia Tech Agricultural Research and Education Center (AREC):
 2009-2011
 - 6 environmental waters and sediments: 2011, 2012, 2014-2015
- *Salmonella* Pattern 61 and other clinically relevant isolates found consistently in waters and sediments at AREC and the 6 other locations
- Environmental waters and sediments are potential reservoirs for Salmonella
- Enhanced agricultural practices related to the use of surface waters are important to mitigating *Salmonella* transfer on to crop plants

Ecological prevalence, genetic diversity, and epidemiological aspects of Salmonella isolated from tomato agricultural regions of the Virginia Eastern Shore. Bell RL et al

Current Status

- WGS is now routine in FDA's outbreak response and compliance/surveillance. Internally (across our agency), and in collaboration with FSIS and CDC, WGS has now been deployed and benefitted the traceability of numerous foodborne contamination events. Weekly Regulatory Guidance from SME.
- Numerous offshoot applications exist (i.e., supply chain management, quality assurance, process evaluation, etc.).
- Genome sequences are **portable**, **instantly cross-compatible and highly scalable**. One technology approach irrelevant of organism.
- Have to balance the need for increased number of well characterized **environmental** (food, water, facility, etc.) sequences with the need for extensive clinical isolates
- WGS, unlike PFGE, is more than a surveillance tool. It provides information on **AMR**, Virulence, serotype, and other critical factors in one assay, including historical reference to pathogen emergence.
- The volume of WGS and associated work continues to grow. The CDC currently sequences all ~800
 Listeria clinical samples they receive annually, and we expect them to start sequencing all STECs and Salmonella clinical samples by 2017.
- As internal and external sequence data is integrated and analyzed in concert, we expect many more Illnesses that were previously attributed to **sporadic infections** to now be linked to specific food or environmental sources. This will result in the detection of a **large number of small outbreaks**.

www.ncbi.nlm.nih.gov/pathogens/

S Home - Pathogen Detect X

C https://www.ncbi.nlm.nih.gov/pathogens/

Pathogen Detection **BETA**

NCBI Pathogen Detection integrates bacterial pathogen genomic sequences originating in food, environmental sources, and patients. It quickly clusters and identifies related sequences to uncover potential food contamination sources, helping public health scientists investigate foodborne disease outbreaks.

Find isolates now!

Explore the Data

Species	New Isolates	Total Isolates
Salmonella enterica	<u>124</u>	<u>53,003</u>
E.coli and Shigella	1	<u>19,861</u>
Listeria monocytogenes	<u>20</u>	12,267
<u>Campylobacter jejuni</u>	0	<u>4,309</u>
Acinetobacter baumannii	0	<u>2,651</u>
<u>Klebsiella pneumoniae</u>	1	2,212
Enterobacter	0	<u>1,151</u>
<u>Vibrio parahaemolyticus</u>	0	<u>817</u>

Learn More

<u>About</u>

<u>FAQ</u>

Antimicrobial Resistance

FDA U.S. FOOD & DRUG

Contributors

Data Resources

Isolates Browser

Antimicrobial resistance reference gene database

Isolates with antibiotic resistant phenotypes

Beta-lactamase resources

Download analysis results (FTP)

Submit

How to submit data

How to submit antibiotic resistance phenotypes

How to submit beta-lactamases

NCBI Submission Portal

New Isolate Check - Listeria

1 1 1 I I I I I I I I I I I I I I I I I	1.1.11			
Nationa	l LID	rary of	r Med	licine

NCBI National Center for Biotechnology Information

Health > Pathogen Detection

Pathogen Detection **BETA**

NCBI Pathogen Detection integrates bacterial pathogen genomic sequences originating in food, environmental sources, and patients. It quickly clusters and identifies related sequences to uncover potential food contamination sources, helping public health scientists investigate foodborne disease outbreaks.

Find isolates now!

Explore the Data

Species	New Isolates	T otal Isolates
Salmonella enterica	<u>368</u>	<u>63,000</u>
E.coli and Shigella	1	26,603
Listeria monocytogenes	<u>3</u>	13,343
<u>Campylobacter jejuni</u>	<u>11</u>	<u>7.857</u>
M 1 1 1 1 1 1 1		- m.

Learn More

<u>About</u>

FAQ

Antimicrobial Resistance

Contributors

Data Resources

Isolates Browser

Antimicrobial resistance reference gene database

Isolates with antibiotic resistant phenotypes

Beta-lactamase resources

Download analysis results (FTP)

New Isolate Check - Listeria

Health > Pathogen Detection > Isolates Browser

ta	xgroup_name:"Listeria	monocytog	enes" AN	D new:1				×	C Search						
iste iste	eria monocytogenes Pl eria monocytogenes Pl w all 3 clusters	DS0000002 DS0000032	<u>77.50 (1)</u> 44.7 (1)												
Li	steria monocytogenes			ž	â										✓ Filters
								к	Page 1 0	f1 📦 🕅 20 🔻					
#	Organism Group	Strain	Serovar	Isolate	Create Date	Location	Isolation Sou	Isolation type	Host	SNP cluster	Min-sar	Min-diff	Bio Sample	Assembly	K-mer group
	Listeria monocytogenes	PNUSAL00		PDT000195503.1	2017-03-21	USA		clinical		PDS000003244.7	3	24	SAMN06624015		PDG00000001,646
1	Listeria menergitegenes												C		
1 2	Listeria monocytogenes	PNUSAL00		PDT000195504.1	2017-03-21	USA		clinical		PDS000011887.1	n/a	21	SAMN06624016		PDG00000001.646

- 3 New Clinical Isolates
- Inconclusive food/env matches, 21-24 SNPs
- Clinical match, 3 SNPs

9	1 🕨 🕅 20 🔻			
1	SNP cluster	Min-sar	Min-dif	Bi
	PDS000003244.7	3	24	SAN
	PDS000011887.1	n/a	21	SAN
ns	PDS00000277.50	27	22	SAN

PDS000003244.7 Tree View

· · · · · · · · · · · · · · · · · · ·	TXT	0	0		介、	01		
			1	T		•	WY BIOLOGICE TANKIN	ноэтой эспесатов нопосутоувнезнитазалуя поопероватов а отоувит сил
								© PDT0000874901ISAr
							PDT000097932.1/SAHER36397968	Listeria monocytogenes DHG1588477 Beneric
						r	PDT080097931.IISAHEA3639795IIL1ster	ia monocytogenes/IIDMG1580476/Generic
				-		1	⇒PD188865737.1ISHR	N83744898IIL1ster1a monocytogenesII4bIPNUSHL881335IPathogen: clinical
			-	1			PD1000066240.IISHIN033384868LISter10 Nor	nocytogenesii4biPNUSHL001269IPathogen: clinical or host-associated
								Igenesimennoshubbee/oranathogen clinice or nost-associated
				120			PD100019550310H1Me66240054L13ter10 BonocytogenesiaPh05PL0627	vistogeneralli (DS0074/Pathogen) clinical or bost-accordiated
						L	2 P01000120150.15111 H0450112 91215021 10 11010	isteria sonoritosenesildi/PNI/SBI 881854/Pathogen: clinical or hott-ass
				<u> </u>			PDT000193040 US01N06561811IListeria lacor	ocutogenesill116874898-1Pathogen: environmental/food/other
							PDT0000866229.IISAIN04147135IListeria monocutogenesil4biPNUSAL001760/	Pathogen: clinical or host-associated
		1					PDT000001252.5ISRM1N02400163IListeria monocyto	genesl4b/PNUSRL000353/Pathogen: clinical or host-associated
					-	-	A 3	PDT000032272.2ISAMN02854698IListeria monocytogenesi PNU
				_	4	1	@PDT0000	329820.2ISAMN02768784IIListeria monocytogenesIIIPNUSAL000680IPa ho
					1		© FDT000065440.IISAI1N03604077ILLister	ria monocytogenesil4biPNUSAL001424iPathogen: clinical or host-associa
			_	1	_	-	8118.115PhN04331113IIListeria monocytogenesIILiDS0058IPathogen: clinical or host-associated	
		-	1			_	© PDT000066202.1/SAMN03761717IListeria monocytogenesil4biPN	USAL001256IPathogen: clinical or host-associated
		-	-				©PDT0000979061ISAMEA3639770WListeria wor	nocytogenesIIDH61508451IGeneric
	1							
	1							
cess								
				PUI	69	966	ISHNN03338486IILISTEP10 IIIONOCYTOGENESII40IPNUSHL0	01269Pathogen: clinical or host-asso
	-	pos	100	00	200	0.0	000E0400III istasia pasatutaasaastabiDaliicol 000070	Dathanan dising on hash-associate
		PDI	100	100.	200	102	b29504698L1ster10 Monocycogenesi46irH06HL666676	arethogen clinical or host-associated
PDT00019550	3115	AMN	REF	24	015		nonocutogenesiiPNUSAL882784iPathogen; clinical or	host-associated
	SC & F & F						nonequerent reencourers a streger cancer of	
				and an other	and the second se	A 4 4		
				PUI	69	012	SHMN04331129 L1ster1a_lionocytogenes L1DS0074 Pat	thogen: clinical or host-associated

·	
2015AM-1867 2015-09 USA stool	
Missing 2015–07–19 USA Missing	
2017K–0712 missing USA missing	
PNUSAS021874 missing USA Missing	
2017K–0710 missing USA missing	
PNUSAS023411 missing USA missing	~ -22 GND
PNUSAS023292 missing USA Missing	>= 52 SINFS
CFSAN024173 2014–07 USA:VA water (10 gal)	
CFSAN024174 2014–07 USA:VA water (10 gal)	\downarrow
CFSAN024176 2014–07 USA:VA water (10 gal)	·
fnw19J13 2014–02–25 USA:OR environmental sample 839242 82–1	3
2014K–0614 missing USA Missing	
2014K-0290 2014-03 USA Urine	
fnw19J11 2014-02-25 USA:OR environmental sample 839242 54-	1
CFSAN058066 2014 USA: WA Environmental Sponge	
-2014K-0603 missing USA Missing	
CFSAN058065 2014 USA: WA Environmental Sponge	
2014K–0606 missing USA Missing	
2014K–0314 missing USA Missing	
CFSAN058068 2014 USA: WA Environmental Sponge	
2014K-0675 2014-01 USA Stool	
CFSAN033398 2014–11–18 USA:WA environmental sponge	
CFSAN058078 2014 USA:WA Environmental Sponge	0 5 SNIP
CFSAN058070 2014 USA: WA Environmental Sponge	0-55815
CFSAN058069 2014 USA: WA Environmental Sponge	
fnw19J12 2014–02–25 USA:OR environmental sample 839242 76–7	
CFSAN058067 2014 USA: WA Environmental Sponge	
CFSAN033399 2014–11–18 USA:WA environmental sponge	
CFSAN058072 2014 USA:WA Environmental Sponge	
-CFSAN058076 2014 USA:WA Environmental Sponge	
CFSAN058074 2014 USA:WA Environmental Sponge	
CFSAN058071 2014 USA:WA Environmental Sponge	
CFSAN058075 2014 USA:WA Environmental Sponge	
CFSAN058073 2014 USA:WA Environmental Sponge	
CFSAN058077 2014 USA:WA Environmental Sponge	

Phylogenetic results of Salmonella enterica clustering pine nuts and clinical isolates, NCBI Pathogen detection cluster PDS000032222.4. The number line corresponds to SNPs, where the branch length is proportional to the number of SNPs present.

510

environmental/other, 2015-10-16, USA:MD, Bulk Pine Nuts, MDA113268, PDT000087115.2
clinical, 2014-05-29, USA, feces, ILBSalm5410230, PDT000031073.2
environmental/other, 2018-08-08, USA, Pesto, 2011K-1668, PDT000360119.1
environmental/other, 2015-02-10, USA: VA, Pine nuts, turkish pine nuts, VA_WGS-00196, PDT000029724.3
o clinical, 2018-03-31, United Kingdom: United Kingdom, human, 286772, PDT000301702.2
environmental/other, 2015-02-10, Turkey, pine nuts, FMA0193, PDT000032606.3
environmental/other, 2015-02-11, USA: NY, Monroe, PESTO, NY_IDR1100031092-9T1, PDT000002725.3
environmental/other, 2014-11-19, USA: NY, Stool, PDT000044058.2
environmental/other, 2015-10-16, USA:MD, Bulk Pine Nuts, MDA113267, PDT000087114.2
environmental/other, 2015-10-16, USA:MD, Bulk Pine Nuts, MDA113269, PDT000087113.2
clinical, 2018-08-08, USA, 2011K-1666, PDT000360216.1

Phylogenetic results of Salmonella enterica clustering hazelnuts and clinical isolates, NCBI Pathogen detection cluster PDS000027740.2. The number line corresponds to SNPs, where the branch length is proportional to the number of SNPs present.

5 10 15

environmental/other, 2017-02-03, USA:OR, in-shell nuts, CFSAN059748, PDT000184883.2 environmental/other, 2017-02-14, USA:OR, in-shell nuts, CFSAN059115, PDT000187063.2 O clinical, 2017-11-28, USA, stool, PNUSAS026569, PDT000267611.2 environmental/other, 2017-02-14, USA:OR, in-shell nuts, CFSAN059114, PDT000187138.2 environmental/other, 2017-02-14, USA:OR, hazelnuts, CFSAN059103, PDT000186833.2 clinical, 2016-11-29, USA, stool, PNUSAS005432, PDT000163497.2 environmental/other, 2017-02-14, USA:OR, hazelnuts, CFSAN059104, PDT000186827.2 clinical, 2017-01-19, USA, 2017K-0016, PDT000179209.2 clinical, 2017-01-19, USA, 2017K-0012, PDT000179221.2 clinical, 2017-01-19, USA, 2017K-0015, PDT000179213.2 environmental/other, 2017-02-03, USA:OR, in-shell nuts, CFSAN059747, PDT000184887.2 environmental/other, 2017-02-03, USA:OR, hazInuts farm shelled, CFSAN059746, PDT000184888.2 environmental/other, 2017-02-03, USA:OR, hazInuts farm shelled, CFSAN059745, PDT000184889.2 environmental/other, 2017-02-03, USA:OR, hazInuts farm shelled, CFSAN059744, PDT000184890.2 clinical, 2018-02-07, USA, PNUSAS033094, PDT000285544.2 Clinical. 2018-02-05. USA. PNUSAS033095. PDT000284989.2 O clinical, 2018-03-09, USA, PNUSAS034629, PDT000293813.2 O clinical, 2017-01-19, USA, PNUSAS007351, PDT000179224.2 O clinical, 2018-02-21, USA, PNUSAS033097, PDT000288349.2

Phylogenetic results of Salmonella enterica clustering nuts and clinical isolates, NCBI Pathogen detection cluster PDS000005469.11. The number line corresponds to SNPs, where the branch length is proportional to the number of SNPs present.

O environmental/other, 2016-11-16, M134, PDT000160717.2
 O environmental/other, 2016-11-16, M135, PDT000160722.2
 O environmental/other, 2019-01-27, United Kingdom: United Kingdom, other, 647809, PDT000452965.1
 O environmental/other, 2017-02-09, United Kingdom: London, Other, 66441, PDT000052993.2
 O environmental/other, 2017-01-30, USA:AZ, Fertilizer, CFSAN073569, PDT000274748.2
 O environmental/other, 2017-01-30, USA:AZ, Fertilizer, CFSAN059241, PDT000183082.2
 O environmental/other, 2017-02-03, USA:CA, Bone Meal Fertilizer, CFSAN059284, PDT000184863.2
 O environmental/other, 2019-02-22, not collected, sg_8326, PDT000468974.1
 O environmental/other, 2017-03-22, not collected, culture, BCW_3057, PDT000197211.1

Phylogenetic results of Salmonella enterica clustering Pistachio and clinical isolates, NCBI Pathogen detection cluster PDS000027237.52. The number line corresponds to SNPs, where the branch length is proportional to the number of SNPs present.

2 4

environmental/other, 2018-03-16, USA:CA, Pistachios, CFSAN075603, PDT000294817.2 environmental/other, 2018-02-26, USA:WA, Pistachios, CFSAN075630, PDT000289623.2 environmental/other, 2018-03-16, USA:CA, Pistachios, CFSAN076748, PDT000294882.2 o environmental/other, 2018-03-16, USA:CA, Pistachios, CFSAN075637, PDT000294873.2 environmental/other, 2018-03-16, USA:CA, Pistachios, CFSAN075638, PDT000294865.2 environmental/other, 2016-03-18, USA:CA, Pistachio, CDPHFDLB-F1602021-005A, PDT000115361.2 environmental/other, 2016-03-18, USA:CA, Pistachio, CDPHFDLB-F1602021-005B. PDT000115360.2 environmental/other, 2017-09-27, USA:CA, Environmental sponge, PDT000244761.2 environmental/other, 2018-12-03, USA:CA, Nuts, CFSAN088277, PDT000413809.1 environmental/other, 2018-12-03, USA:CA, Nuts, CFSAN088276, PDT000413685.1 • environmental/other, 2018-12-03, USA:CA, Nuts, CFSAN088283, PDT000413770.1 O environmental/other, 2018-04-09, USA:CA, Environmental sponge, CFSAN077990, PDT000304837.2 O environmental/other, 2018-03-16, USA:CA, Pistachios, CFSAN076741, PDT000294822.2 • environmental/other, 2018-12-03, USA:CA, Nuts, CFSAN088278, PDT000413807.1 O clinical, 2016-03-24, USA, Urine, PNUSAS001723, PDT000120800.2 O environmental/other, 2018-12-03, USA:CA, Nuts, CFSAN088282, PDT000413731.1 –O environmental/other, 2018-12-03, USA:CA, Nuts, CFSAN088275, PDT000413674.1 environmental/other, 2018-03-16, USA:CA, Pistachios, CFSAN076742, PDT0002948. environmental/other, 2018-03-16, USA:CA, Pistachios, CFSAN076749, PDT000294884.2 environmental/other, 2018-03-16, USA:CA, Pistachios, CFSAN076750, PDT000294883.2 environmental/other, 2018-12-03, USA:CA, Nuts, CFSAN088279, PDT000413729.1

Combining Genetic Distances and FOA Facility Information

Yu Wang, James B. Pettengill, Arthur Pightling, Ruth Timme, Marc Allard, Errol Strain, and Hugh Rand (2018) Genetic Diversity of Salmonella and Listeria Isolates from Food Facilities. Journal of Food Protection: December 2018, Vol. 81, No. 12, pp. 2082-2089.

GenomeGraphR: WGS data integration, analysis, and visualization for risk assessment and management: <u>https://fda-riskmodels.foodrisk.org/genomegraphr/</u> Moez Sanaa, Régis Pouillot, Francisco J Garces-Vega, Errol Strain, Jane M Van Doren doi: https://doi.org/10.1101/495309 2018.

From WGS to Antibiotic Resistance Genotype

There are 11 records with 2 flagged genes uploaded in the last 30 days

Economic Analysis of Salmonella outbreaks reduction using WGS

	Canada	United States
Incidence of illness	47,028	1,200,000
Costs to adopt WGS	\$158,340,000	\$100,000,000
QUALY lost	469.75	16,782
Total Illness costs	\$287,770,000	\$3,300,000,000
Total net benefit of adopting WGS	\$90,250,000	\$1,000,000,000

Model assumes 70% reduction in numbers of illnesses due to WGS implementation. Benefits gained due to earlier detection and decreased time to recall food items. United States estimates are adjusted based on increase population size. Additional analysis is needed to adjust to US illnesses and US health care costs.

Monetary Loss from Bacteria Foodborne Illness Total \$13,279,603,000

FD/

Acknowledgements

• FDA

- Center for Food Safety and Applied Nutrition
- Center for Veterinary Medicine
- Office of Regulatory Affairs
- National Institutes of Health
 - National Center for Biotechnology Information

State Health and University Labs

- Alaska
- Arizona
- California
- Florida
- Hawaii
- Maryland
- Minnesota
- New Mexico
- New York
- South Dakota
- Texas
- Virginia
- Washington

- USDA/FSIS and ARS
- CDC
 - Enteric Diseases Laboratory
- INEI-ANLIS "Carolos Malbran Institute," Argentina
- Centre for Food Safety, University College Dublin, Ireland and Irish FSA
- Melbourne (FSA). Australia
- Public Health England, UK
- Institute for Food Safety and Health (IFSH)
- WHO and FAO
- Illumina
- Pac Bio
- Other independent collaborators

www.fda.gov

